Appendix

List of Tables

Table A1. Major Utility Units Firing Coal in 1997 – 2001, Fuel Consumption, Utilization, and Electric Generation

Table A2. Estimated Mercury Control and Average Emissions for 1997 through 2001

Table A3. Estimated Mercury Control and Emissions based on Anticipated Equipment and Operations in 2008

Table A4. Estimated Percent Mercury Control for each Utility Resulting from Existing and Surrogate Control Technology

Table A5. Mercury Control Cost for Application of Surrogate Control Technology

Table A1. Major Utility Units Firing Coal in 1997 – 2001, Fuel Consumption, Utilization, and Electric Generation

	1. Major C		Year	Unit	Capacity	Average F	uel Consumption	<u> </u>	ı	Capacity F			rage Electric Generation	n (kWh)
Company	Source	Unit	Installed		(MW)	1997-1999	1998-2000	1999-2001	1997-1999	1998- 2000	1999-2001	1997-1999	1998-2000	1999-2001
	Columbia	1	1975	28	512	41,042,808	41,371,588	41,466,684	80%	80%	80%	3,570,759	167 3,599,363,335	3,607,636,768
	Columbia	2	1978	25	511	43,087,156	42,183,095	41,374,071	84%	82%	80%	3,741,297,		3,592,548,930
	Edgewater	3	1951	52	60	4,276,938	4,572,581	4,649,996	58%	62%	63%	304,047	725 325,065,024	330,568,460
	Edgewater	4	1969	34	330	19,405,030	19,375,602	19,328,937	63%	63%	63%	1,814,581		1,807,466,481
Alliant	Edgewater	5	1985	18	380	29,902,952	30,190,928	29,465,949	78%	79%	77%	2,602,638.		2,564,603,927
	Nelson Dewey	1	1959	44	100	7,134,536	6,705,282	6,807,787	65%	61%	62%	566,233.		540,300,582
	Nelson Dewey	2	1962	41	100	7,589,344	7,173,473	6,625,805	69%	65%	60%	602,328.		525,857,513
	Rock River	1	1954	49	75	3,523,611	2,272,353	1,065,675	41%	27%	13%	272,444		82,397,526
	Rock River	2	1955	48	75	3,925,967	2,566,126	1,372,239	46%	30%	16%	303,554	149 198,411,830	106,100,954
	Alma	1	1959	44	20	522,117	603,429	575,214	30%	35%	33%	52,739		58,102,424
	Alma	2	1959	44	22	447,864	513,254	515,129	26%	30%	30%	49,762		57,236,519
DDC	Alma	3	1959	44	21	478,393	547,839	635,054	19%	22%	25%	34,596		45,926,026
DPC	Alma	4	1959	44	59	2,751,718	2,883,236	2,359,946	59%	62%	51%	304,942		261,526,661
	Alma	5	1959	44	85	3,737,677	3,903,264	3,559,973	54%	57%	52%	402,869		383,715,071
	Genoa	3	1969	34	376	20,097,173	18,827,523	19,561,645	75%	71%	73%	2,486,111		2,419,864,581
	JP Madget	JPM	1979	24	374	24,158,710	25,181,642	25,457,875	73%	76%	77%	2,387,779		2,516,185,353
	Oak Creek	5	1960	43	258	13,536,526	12,823,958	14,930,492	67%	64%	74%	1,519,766		1,676,269,374
	Oak Creek	6	1961	42	260	12,912,302	15,060,968	13,733,384	65%	75%	69%	1,470,520		1,564,029,753
	Oak Creek	7	1965	38	280	20,788,775	21,072,776	19,658,702	91%	92%	86%	2,231,923		2,110,596,876
	Oak Creek	8	1967	36	305	19,028,892	19,774,981	20,884,450	85%	88%	93%	2,260,931		2,481,401,384
	Pleasant Prairie	1	1980	23	580	51,581,077	48,520,824	50,035,533	96%	90%	93%	4,858,237		4,712,667,966
	Pleasant Prairie	2	1985	18	580	50,871,606	51,730,991	50,388,042	94%	96%	93%	4,791,414		4,745,869,528
WE	Port Washington	1	1935	68	80	3,379,433	3,675,803	3,710,639	35%	38%	38%	244,222		268,158,217
WE	Port Washington Port Washington	3	1943 1948	60 55	80 82	3,989,526 4,080,525	4,087,488 3,990,400	3,757,328 3,920,299	41% 42%	42% 41%	39% 40%	288,312 302,261		271,532,261 290,392,519
	Port Washington	4	1948	54	80	3,363,659	3,780,261	3,749,563	35%	39%	39%	243,082		270,971,153
	Valley	1	1949	35	64	4,166,888	4,022,680	4,028,322	56%	54%	54%	315,225		304,743,061
	Valley	1	1968	35	62	4,228,982	3,977,843	4,037,098	57%	54%	54%	309,925		295,862,998
	Valley	2	1969	34	70	4,501,956	4,439,179	4,401,651	61%	60%	60%	375,163		366,804,278
	Valley	2	1969	34	70	4,684,626	4,647,078	4,452,039	64%	63%	61%	390,385	500 387,256,500	371,003,250
	County Plant	1,2,3	1707	> 40	70	1,404,661	1,404,661	1,404,661	38%	38%	38%	370,383	ND ND	ND
	Pulliam	3	1943	60	26	1,058,716	1,125,279	1,123,708	34%	37%	36%	78,289		83,095,586
	Pulliam	4	1947	56	27	1,358,317	1,564,953	1,628,013	44%	51%	53%	104,307		125,018,038
	Pulliam	5	1949	54	52	3,681,988	3,838,910	3,924,780	74%	77%	79%	336,491		358,679,337
	Pulliam	6	1951	52	67	5,454,586	5,576,382	5,909,046	83%	85%	90%	489,954		530,776,383
WPSC	Pulliam	7	1958	45	88	6,545,703	7,018,831	6,398,109	93%	100%	91%	718,321	353 770,242,122	702,124,408
,,,,,,,	Pulliam	8	1964	39	135	10,486,074	10,285,958	10,069,780	93%	91%	89%	1,099,083		1,055,450,509
	Weston	1	1954	49	68	4,179,546	4,157,853	4,473,425	58%	58%	62%	344,495		368,718,667
	Weston	2	1960	43	92	6,139,392	6,698,297	6,809,183	81%	89%	90%	656,772		728,424,264
	Weston	3	1981	22	337	29,642,435	29,378,815	28,993,558	87%	86%	85%	2,574,613		2,518,254,938
				1		<u> </u>			B					
Alliant					2,143	159,888,341	156,411,028	152,157,144	70%	69%	67%	13,777,885		13,157,481,140
DPC					957	52,193,652	52,460,187	52,664,835	67%	68%	68%	5,718,801		5,742,556,635
WE					2,851	201,114,774	201,605,231	201,687,545	77%	77%	77%	19,601,373		19,730,302,619
WPSC					892	68,546,757	69,645,278	69,329,602	81%	82%	82%	6,402,329		6,470,542,128
Total					6,843	481,743,523	480,121,724	475,839,126	74%	74%	73%	45,500,390	132 45,424,749,020	45,100,882,521
Notes:														

- Fuel consumption for units > 25 MW derived from USEPA Acid Rain database.
- Fuel consumption for units < 25 MW derived from DNR air emission inventory.
- Capacity Factor = fuel consumption / theoretical fuel consumption x 100
- Electric generation = Unit Capacity x Capacity Factor x 8760 hours per year

Table A2. Estimated Mercury Control and Average Emissions for 1997 through 2001

1001011				114 11 1010	SC LIMB		.997 tin ough 20		Annual Fue	el Mercury C	Content (lbs)	Annual M	ercury Emis	ssions (lbs)
Major Utility	Facility	Gen Unit	Fuel Class	Fuel Hg Content (lb/Tbtu)	Chlorine (ppm)	Existing Air Pollution Control Equipment	Estimate Mercury Control from Existing Equipment (1)	Other Indications of Control Efficiency (see Key)		3 Year Ave	3 Year Ave	3 Year Ave 1997 - 1999	3 Year	3 Year
	Columbia	1**	Sub	4.77	50	ESPh	0%	negative/10%	196	197	198	196	197	198
	Columbia	2	Sub	4.77	50	ESPc	12%		206	201	197	180	176	173
	Edgewater	3	Sub	4.37	61	ESPc	14%		19	20	20	16	17	17
Alliant	Edgewater	4	Sub	4.37	61	ESPc	14%		85	85	84	73	72	72
Iia	Edgewater	5	Sub	4.37	61	ESPc	14%		131	132	129	112	113	110
\mathbf{F}	Nelson Dewey	1**	Sub	6.25	409	ESPh	15%	53%/negative	45	42	43	38	36	36
	Nelson Dewey	2	Sub	6.25	409	ESPh	15%	53%/negative	47	45	41	40	38	35
	Rock River	1	Sub	6.19	344	ESPc	30%		22	14	7	15	10	5
	Rock River	2	Sub	6.19	344	ESPc	30%		24	16	8	17	11	6
	Alma	1*	Bitum	5.69		ESPc	35%		3	3	3	2	2	2
	Alma	2*	Bitum	5.69		ESPc	35%		3	3	3	2	2	2
()	Alma	3*	Bitum	5.69		ESPc	35%		3	3	4	2	2	2
DPC	Alma	4	Sub/Bitum	4.19	1529	ESPc	30%		12	12	10	10	11	9
	Alma	5	Sub/Bitum	4.19	1529	ESPc	30%		16	16	15	14	15	13
	Genoa	3	Sub/Bitum	4.6	2552	ESPc	55%		92	87	90	42	39	40
	JP Madget	1	Sub	4.84	19	ESPh	0%		117	122	123	117	122	123
	Oak Creek	5	Sub/Bitum	5.34	346	ESPc	30%		72	68	80	50	48	56
	Oak Creek	6	Sub/Bitum	5.26	246	ESPc	28%		68	79	72	49	57	52
	Oak Creek	7	Sub/Bitum	5.32	313	ESPc	30%		111	112	105	78	79	73
	Oak Creek	8	Sub/Bitum	5.12	80	ESPc	21%		97	101	107	77	80	85
	Pleasant Prairie	1	Sub	9.41	14	ESPc	0%	5%	485	457	471	485	457	471
	Pleasant Prairie	2	Sub	9.41	14	ESPc	0%	5%	479	487	474	479	487	474
ודו	Port Washington	1	Bitum	6.83	246	ESPc	20%		23	25	25	18	20	20
WE	Port Washington	2	Bitum	6.83	1231	ESPc	40%		27	28	26	16	17	15
-	Port Washington	3	Bitum	6.83	1231	ESPc	40%		28	27	27	17	16	16
	Port Washington	4**	Bitum	6.83	246	ESPc	20%	29%/44%	23	26	26	18	21	20
	Valley	1	Bitum	3.51	548	FF	72%	negative	15	14	14	4	4	4
	Valley	1	Bitum	3.51	548	FF	72%	negative	15	14	14	4	4	4
	Valley	2**	Bitum	3.51	548	FF	72%	negative	16	16	15	4	4	4
	Valley	2	Bitum	3.51	548	FF	72%	negative	16	16	16	5	5	4
	County Pant	1,2,3*	Bitum	7.8		ESPc	36%		11	11	11	7	7	7

Table A2. Estimated Mercury Control and Average Emissions for 1997 through 2001 (con't)

						Existing		Other	Annual Fu	el Mercury (Content (lbs)	Annual M	ercury Emi	ssions (lbs)
Major Utility	Facility	Gen Unit	Fuel Class	Fuel Hg Content (lb/Tbtu)	Chlorine (ppm)	Air Pollution Control Equipment	Estimate Mercury Control from Existing Equipment (1)	Indications of Control Efficiency (see Key)		3 Year Ave 1998 - 2000	3 Year Ave 1999 - 2001	3 Year Ave 1997 - 1999	3 Year Ave 1998 - 2000	3 Year Ave 1999 - 2001
	Pulliam	3	Sub	3.1	64	ESPc	22%		3	3	3	3	3	3
	Pulliam	4	Sub	3.1	64	ESPc	22%		4	5	5	3	4	4
	Pulliam	5	Sub	3.1	64	ESPc	22%		11	12	12	9	9	9
$\tilde{\Sigma}$	Pulliam	6	Sub	3.1	64	ESPc	22%		17	17	18	13	13	14
WPSC	Pulliam	7	Sub	3.1	64	ESPc	22%		20	22	20	16	17	15
≽	Pulliam	8	Sub	3.1	64	ESPc	22%		33	32	31	25	25	24
	Weston	1	Sub	4.75	158	ESPc	28%		20	20	21	14	14	15
	Weston	2	Sub	4.75	158	ESPc	28%		29	32	32	21	23	23
	Weston	3	Sub	4.75	158	ESPh	7%		141	140	138	131	130	128
								Alliant	774	752	728	687	671	653
							als	DPC	245	246	248	188	192	192
							Subtotals	WE	1,486	1,481	1,482	1,312	1,304	1,306
							Suk	WPSC	278	282	281	235	237	236
								Total	2,783	2,762	2,739	2,422	2,405	2,387

System-W	ide Percen	t Mercury	Control
	3 Year	3 Year	3 Year
	Ave 1997 -	Ave 1998 -	Ave 1999 -
Major Utility	1999	2000	2001
Alliant	11%	11%	10%
DPC	23%	22%	22%
WE	12%	12%	12%
WPSC	16%	16%	16%
Major Utility			
Average	13%	13%	13%

Notes

Key: "Other Indications of Hg Control Efficiency"

Columbia 1 - ICR phase II testing indicated 10% reduction measured on a flue gas to flue gas basis across the control equipment and negative reduction measured on a coal to post control equipment flue gas. (EPA-600/R-01-109, De Nelson Dewey - ICR phase II testing indicated a negative reduction measured on a flue gas to flue gas basis across the control equipment and 53% reduction measured on a coal to post control equipment flue gas. (EPA-600/R-01-109 Pleasant Prairie 2 - Flue gas testing across pollution control equipment conducted during the full scale testing of AC sorbent injection indicated a baseline reduction of 5%.

Port Washington 4 - ICR phase II testing indicated 29% reduction measured on a flue gas to flue gas basis across the control equipment and 44% removal measured on a coal to post control equipment flue gas. (EPA-600/R-01-109, I Valley 3 - ICR phase II testing yielded negative results that EPA indicated as invalid. (EPA-600/R-01-109, Dec 2001)

¹⁾ The Electric Power Research Institute (EPRI) evaluated the ICR data and estimated unit emissions based on fuel chlorine content and pollution control equipment. This estimate either agreed with or is more conservative for units that participated in ICR Phase II testing.

^{* -} Units that were not required to perform ICR Phase I fuel testing. Fuel Hg content estimated using ICR database by fuel type and origin.

^{** -} Units were required to perform ICR Phase II flue gas mercury emission and speciation testing.

Table A3. Estimated Mercury Control and Emissions based on Anticipated Equipment and Operations in 2008.

Major Utility	Facility	Unit	Fuel Class	Fuel Hg Content (lb/Tbtu)	Chlorine (ppm)	Existing Air Pollution Control Equipment	Hg Control Efficency (1)	Future Anticipated Change in Operation / Configuration
	Columbia	1**	Sub	4.77	50	ESPh	0%	
	Columbia	2	Sub	4.77	50	ESPc	12%	
	Edgewater	3	Sub	4.37	61	ESPc	14%	
unt	Edgewater	4	Sub	4.37	61	ESPc	14%	
Alliant	Edgewater	5	Sub	4.37	61	ESPc	14%	
A	Nelson Dewey	1**	Sub	6.25	409	ESPh	15%	
	Nelson Dewey	2	Sub	6.25	409	ESPh	15%	
	Rock River	1	Sub	6.19	344	ESPc	100%	Conversion to NG
	Rock River	2	Sub	6.19	344	ESPc	100%	Conversion to NG
	Alma	1*	Bitum	5.69		ESPc	35%	
	Alma	2*	Bitum	5.69		ESPc	35%	
7)	Alma	3*	Bitum	5.69		ESPc	35%	
DPC	Alma	4	Sub/Bitum	4.19	1529	ESPc	30%	
	Alma	5	Sub/Bitum	4.19	1529	ESPc	30%	
	Genoa	3	Sub/Bitum	4.6	2552	ESPc	55%	
	JP Madget	1	Sub	4.84	19	ESPh	0%	
	Oak Creek	5	Sub/Bitum	5.34	346	ESPc	30%	
	Oak Creek	6	Sub/Bitum	5.26	246	ESPc	28%	
	Oak Creek	7	Sub/Bitum	5.32	313	ESPc	30%	
	Oak Creek	8	Sub/Bitum	5.12	80	ESPc	21%	
	Pleasant Prairie	1	Sub	9.41	14	ESPc	0%	
	Pleasant Prairie	2	Sub	9.41	14	ESPc	0%	
[+]	Port Washington	1	Bitum	6.83	246	ESPc	100%	Repowered to NG
WE	Port Washington	2	Bitum	6.83	1231	ESPc	100%	Repowered to NG
	Port Washington	3	Bitum	6.83	1231	ESPc	100%	Repowered to NG
	Port Washington	4**	Bitum	6.83	246	ESPc	100%	Repowered to NG
	Valley	1	Bitum	3.51	548	FF	72%	
	Valley	1	Bitum	3.51	548	FF	72%	
	Valley	2**	Bitum	3.51	548	FF	72%	
	Valley	2	Bitum	3.51	548	FF	72%	
	County Plant	1,2,3*	Bitum	7.8	_	ESPc	36%	

Annual Fuel
Mercury Content
(lbs) using
baseline fuel
196
206
19
85
131
45
47
22
24
3
3
4
10
15
90
123
80
72
105
107
471
474
25
26
27
26
14
14
15
16
11

Annual Mei	
Emissions	
using baselin	e fuel
consumpt	ion
	196
	180
	16
	73
	112
	38
	40
	-
	-
	2
	2
	2
	9
	13
	40
	123
	56
	52
	73
	85
	471
	474
	-
	-
	-
	-
	4
	4
	4
	4
	7

Table A3. Estimated Mercury Control and Emissions based on Anticipated Equipment and Operations in 2008 (con't).

Major Utility	Facility	Unit	Fuel Class	Fuel Hg Content (lb/Tbtu)	Chlorine (ppm)	Existing Air Pollution Control Equipment	Hg Control Efficency (1)	Future Anticipated Change in Operation / Configuration
	Pulliam	3	Sub	3.1	64	ESPc	22%	
	Pulliam	4	Sub	3.1	64	ESPc	22%	
	Pulliam	5	Sub	3.1	64	ESPc	22%	
Ŋ	Pulliam	6	Sub	3.1	64	ESPc	22%	
WPSC	Pulliam	7	Sub	3.1	64	ESPc	22%	
≽	Pulliam	8	Sub	3.1	64	ESPc	22%	
	Weston	1	Sub	4.75	158	ESPc	28%	
	Weston	2	Sub	4.75	158	ESPc	28%	
	Weston	3	Sub	4.75	158	FF	49%	Fabric Filter PM Cntrl
								Alliant

<i>)</i> •	
Annual I	Tuel
Mercury Co	ontent
(lbs) usi	ng
baseline f	fuel
	3
	5
	12
	18
	20
	31
	21
	32
	138
	774
	248
	1,482
	281
	2,785

Annual Mercury Emissions (lbs) using baseline fuel consumption
3
4
9
14
15
24
15
23
70
654
192
1,234
178
2,259

System-Wide Mercury Control			
Alliant	15%		
DPC	22%		
WE	17%		
WPSC	37%		
Major Utility			
Average	19%		

Notes

Subtotals

DPC
WE
WPSC
Major Utility Total

¹⁾ Control efficiency based on determination in Table A2 for units without equipment changes. For units with changes the ICR data results is applied for that unit type and fuel.

^{* -} Units that were not required to perform ICR Phase I fuel testing. Fuel Hg content estimated using ICR database by fuel type and origin.

^{** -} Units were required to perform ICR Phase II flue gas mercury emission and speciation testing.

Table A4. Estimated Percent Mercury Control for each Utility Resulting from Existing and Surrogate Control Technology

			CAP		Existing	Surrogate Techno	Control								cent of Utili	ity Total Me	rcury
Utility	Source	Unit	MW	Age	Mercury Control by 2008	System Configuration	Unit Control Efficiency	3	4	5	6	7	8	9	10	11	12
	Edgewater	3	60	51	0.4%	AC inj	60%								1.3%	1.3%	1.3%
	Rock River	1	75	48	2.8%												
	Rock River	2	75	47	3.1%												
	Nelson Dewey	1	100	43	0.9%	AC inj	60%							3.5%	3.5%	3.5%	3.5%
	Nelson Dewey	2	100	40	0.9%	AC inj	60%						3.7%	3.7%	3.7%	3.7%	3.7%
Alliant (1)	Edgewater	4	330	33	1.6%	ACinj / FF	90%									9.9%	9.9%
Amant (1)	Edgewater	5	380	17	2.4%	ACinj / FF	90%								15.2%	15.2%	15.2%
	Columbia	2	511	27	3.3%	ACinj / FF	90%							23.9%	23.9%	23.9%	23.9%
	Columbia	1	512	24	0.0%	ACinj / FF	90%					22.8%	22.8%	22.8%	22.8%	22.8%	22.8%
	Surrogate Techno	logy Co	ntrolled E	Emission				0%	0%	0%	0%	23%	27%	54%	70%	80%	80%
	Existing Equipme	nt Contr	olled Em	issions	15.4%			15%	15%	15%	15%	15%	15%	10%	8%	6%	6%
	Total Controlled l	Emission	ıs					15%	15%	15%	15%	38%	41%	64%	78%	86%	86%
	Alma	1	20	43	0.5%	AC inj	60%								0.7%	0.7%	0.7%
	Alma	3	21	43	0.5%	AC inj	60%								0.7%	0.7%	0.7%
	Alma	2	22	43	0.4%	AC inj	60%								0.6%	0.6%	0.6%
	Alma	4	59	43	0.4%	AC inj	60%							2.8%	2.8%	2.8%	2.8%
DPC	Alma	5	85	43	0.7%	AC inj	60%						3.8%	3.8%	3.8%	3.8%	3.8%
DPC	JP Madget	1	374	23	0.0%	ACinj / FF	90%					43.0%	43.0%	43.0%	43.0%	43.0%	43.0%
	Genoa	3	376	33	20.0%	ACinj / FF	90%							34.0%	34.0%	34.0%	34.0%
	Surrogate Techno	urrogate Technology Controlled Emission						0%	0%	0%	0%	43%	47%	84%	86%	86%	86%
		xisting Equipment Controlled Emissions						23%	23%	23%	23%	23%	22%	1%	0%	0%	0%
	Total Controlled	Emission	ıs					23%	23%	23%	23%	66%	69%	85%	86%	86%	86%
	County Plant	1,2,3			0.3%	AC inj	60%								0.5%	0.5%	0.5%
	Valley	1	62	34	0.7%	AC inj	80%							0.8%	0.8%	0.8%	0.8%
	Valley	1	64	34	0.7%	AC inj	80%							0.8%	0.8%	0.8%	0.8%
	Valley	2	70	33	0.8%	AC inj	80%						0.9%	0.9%	0.9%	0.9%	0.9%
	Valley	2	70	33	0.8%	AC inj	80%						0.9%	0.9%	0.9%	0.9%	0.9%
	Port Washington	1	80	67	1.7%	,											
	Port Washington	2	80	59	1.7%												
	Port Washington	3	82	54	1.8%												
	Port Washington	4	80	53	1.7%												
WE (2)	Oak Creek	5	258	42	1.6%	ACinj / FF	90%								4.4%	4.4%	4.4%
	Oak Creek	6	260	41	1.4%	ACinj / FF	90%								4.1%	4.1%	4.1%
	Oak Creek	7	280	37	2.1%	ACinj / FF	90%		İ							6.7%	6.7%
	Oak Creek	8	305	35	1.5%	ACinj / FF	90%										5.9%
	Pleasant Prairie	1	580	22	0.0%	ACinj / FF	90%		İ			29.6%	29.6%	29.6%	29.6%	29.6%	29.6%
	Pleasant Prairie	2	580	17	0.0%	ACinj / FF	90%							29.2%	29.2%	29.2%	29.2%
	Surrogate Techno			_				0%	0%	0%	0%	30%	31%	62%	71%	77%	84%
	Existing Equipme				16.8%			17%	17%	17%	17%	17%	15%	14%	11%	9%	7%
	Total Controlled 1							17%	17%	17%	17%	46%	47%	76%	82%	86%	91%

Table A4. Estimated Percent Mercury Control for each Utility Resulting from Existing and Surrogate Control Technology (con't).

	Source	Unit	CAR		Existing	Technology			The Surrogate Control Lechnology and Lotal Mercury Control as Percent of Lithity Lotal Mercury										
Utility			CAP MW	Age	Mercury Control by 2008	System Configuration	Unit Control Efficiency	3	4	5	6	7	8	9	10	11	12		
	Pulliam	3	26	59	0.3%	AC inj	60%							0.7%	0.7%	0.7%	0.7%		
	Pulliam	4	27	55	0.3%	AC inj	60%							0.9%	0.9%	0.9%	0.9%		
	Pulliam	5	52	53	1.0%	AC inj	60%						2.5%	2.5%	2.5%	2.5%	2.5%		
	Pulliam	6	67	51	1.5%	AC inj	60%						3.6%	3.6%	3.6%	3.6%	3.6%		
	Weston	1	68	48	2.1%	ACinj / FF	90%									6.4%	6.4%		
WPSC(3)	Pulliam	7	88	44	1.6%	ACinj / FF	90%										6.6%		
WPSC(3)	Weston	2	92	42	3.2%	ACinj / FF	90%								9.4%	9.4%	9.4%		
	Pulliam	8	135	38	2.5%	ACinj / FF	90%							10.5%	10.5%	10.5%	10.5%		
	Weston	3	337	21	24.0%	ACinj / FF	90%					45.5%	45.5%	45.5%	45.5%	45.5%	45.5%		
	Surrogate Techno	ology Co	ntrolled I	Emission				0%	0%	0%	0%	46%	52%	64%	73%	80%	86%		
	Existing Equipme	ent Contr	olled Em	issions	36.5%			37%	37%	37%	37%	13%	10%	7%	4%	2%	0%		
	Total Controlled Emissions							37%	37%	37%	37%	58%	62%	71%	77%	81%	86%		

	Surrogate Technology Controlled Emission					
Utility	Jtility Existing Equipment Controlled Emissions					
Average	Total Controlled Emissions					

0%	0%	0%	0%	30%	34%	62%	73%	81%	84%
19%	19%	19%	19%	17%	14%	11%	8%	6%	4%
19%	19%	19%	19%	47%	48%	73%	81%	87%	88%

Notes:

Surrogate Control Technology:

AC: non-Core Generation Units - Injection of activated carbon prior to existing particulate control equipment with a unit control efficiency of 60% for units with an electrostatic precipitator and 80% for units with a fabric filter particulate AC / FF: Core Generation Units - Installation of a dedicate fabric filter along with activated carbon injection after the existing particulate control equipment to yield a 90% unit control efficiency.

"Existing Controlled Emissions" - Reflects the amount of a utility's percent mercury control occurring at each unit. The unit's control efficiency is based on EPRI calculations or updated estimates based on ICR correlations and 1998-2000 fuel cons

- 1) Rock River existing controlled emissions reflects conversion from coal to natural gas.
- 2) Port Washington control based on planned repowering.
- $3) We ston\ 1, We ston\ 2, 3, Pulliam\ 7, and\ Pulliam\ 8\ surrogate\ technology\ is\ polishing\ Fabric\ Filter\ /\ AC\ injection.$

Table A5. Mercury Control Cost for Application of Surrogate Control Technology.

Company	Source	Unit	Capacity MW	Age
	Edgewater	3	60	51
	Rock River	1	75	48
	Rock River	2	75	47
	Nelson Dewey	1	100	43
	Nelson Dewey	2	100	40
Alliant	Edgewater	4	330	33
Amant	Edgewater	5	380	17
	Columbia	2	511	27
	Columbia	1	512	24
	Total Annual Control			
	Accumulated Total Co	Nth Year		
	Alma	1	20	43
	Alma	3	21	43
	Alma	2	22	43
	Alma	4	59	43
DPC	Alma	5	85	43
DPC	JP Madget	1	374	23
	Genoa	3	376	33
	Total Annual Control	Cost		
	Accumulated Total Co			
	County Plant	1,2,3		
	Valley	1	62	34
	Valley	1	64	34
	Valley	2	70	33
	Valley	2	70	33
	Port Washington	1	80	67
	Port Washington	2	80	59
	Port Washington	3	82	54
WE	Port Washington	4	80	53
***	Oak Creek	5	258	42
	Oak Creek	6	260	41
	Oak Creek	7	280	37
	Oak Creek	8	305	35
	Pleasant Prairie	1	580	22
	Pleasant Prairie	2	580	17
	Total Annual Control	Cost		
	Accumulated Total Co	ost through	n Nth Year	

Estimated Cost in Nth Year (\$M)												
7	8	9	10	11	12							
			0.2	0.2	0.2							
		0.5	0.5	0.5	0.5							
	0.5	0.5	0.5	0.5	0.5							
				4.4	4.4							
			5.6	5.6	5.6							
		7.7	7.7	7.7	7.7							
7.7	7.7	7.7	7.7	7.7	7.7							
8	8	16	22	26	26							
8	16	32	54	81	107							
			0.0	0.0	0.0							
			0.0	0.0	0.0							
			0.0	0.0	0.0							
		0.2	0.2	0.2	0.2							
	0.3	0.3	0.3	0.3	0.3							
5.4	5.4	5.4	5.4	5.4	5.4							
		5.4	5.4	5.4	5.4							
5	6	11	11	11	11							
5	11	22	34	45	57							
			0.3	0.3	0.3							
		0.4	0.4	0.4	0.4							
		0.4	0.4	0.4	0.4							
	0.4	0.4	0.4	0.4	0.4							
	0.4	0.4	0.4	0.4	0.4							
			3.7	3.7	3.7							
			3.6	3.6	3.6							
				4.4	4.4							
					4.8							
9.7	9.7	9.7	9.7	9.7	9.7							
		9.7	9.7	9.7	9.7							
10	10	21	28	33	37							
10	20	41	69	102	139							

High Cost in Nth Year (\$M)													
7	8	9	10	11	12								
			0.2	0.2	0.2								
		0.5	0.5	0.5	0.5								
	0.5	0.5	0.5	0.5	0.5								
				5.0	5.0								
			6.7	6.7	6.7								
		9.0	9.0	9.0	9.0								
9.0	9.0	9.0	9.0	9.0	9.0								
9	10	19	26	31	31								
9	19	37	62	94	125								
9	19	31	63										
			0.1	0.1	0.1								
			0.1	0.1									
		0.3	0.1	0.1	0.1								
	0.4	0.3	0.3	0.3	0.3								
6.3	6.3	6.3	6.3	6.3	6.3								
0.5	0.5	6.5	6.5	6.5	6.5								
6	7	14	14	14	14								
- 0	,	17	17	17	17								
6	13	27	40	54	68								
U	15		0.3	0.3	0.3								
		0.4	0.4	0.4	0.4								
		0.4	0.4	0.4	0.4								
	0.4	0.4	0.4	0.4	0.4								
	0.4	0.4	0.4	0.4	0.4								
	0		0	0	· · ·								
			4.5	4.5	4.5								
			4.4	4.4	4.4								
				5.3	5.3								
					5.7								
11.1	11.1	11.1	11.1	11.1	11.1								
		11.1	11.1	11.1	11.1								
11	12	24	33	38	44								
11	23	47	80	118	161								

Table A5. Mercury Control Cost for Application of Surrogate Control Technology (con't).

								<u> </u>			_						
			a		Est	imated	Cost in	Nth Yea	ar (\$M)				High	Cost in	Nth Ye	ar (\$M)	
Company	Source	Unit	Capacity MW	Age	7	8	9	10	11	12		7	8	9	10	11	12
	Pulliam	3	26	59			0.1	0.1	0.1	0.1	F			0.1	0.1	0.1	0.1
	Pulliam	4	27	55			0.1	0.1	0.1	0.1				0.1	0.1	0.1	0.1
	Pulliam	5	52	53		0.2	0.2	0.2	0.2	0.2			0.3	0.3	0.3	0.3	0.3
	Pulliam	6	67	51		0.3	0.3	0.3	0.3	0.3			0.4	0.4	0.4	0.4	0.4
	Weston	1	68	48					0.9	0.9						1.5	1.5
WPSC	Pulliam	7	88	44						1.4							2.0
Wrsc	Weston	2	92	42				1.4	1.4	1.4					2.0	2.0	2.0
	Pulliam	8	135	38			2.1	2.1	2.1	2.1				2.9	2.9	2.9	2.9
	Weston	3	337	21	5.2	5.2	5.2	5.2	5.2	5.2		6.3	6.3	6.3	6.3	6.3	6.3
	Total Annual Control	Cost			5	6	8	9	10	12		6	7	10	12	14	16
	Accumulated Total C	l ost throug	h Nth Year		5	11	19	28	38	50		6	13	23	36	49	65
Major	Total Annual Control	l Cost			28	30	56	71	81	87	Г	33	35	66	84	96	104
						-	-	-	-	-		-	-	-	-	-	-
omity 1 otal	Accumulated Total C	ost throug	h Nth Year		28	58	114	185	266	353		33	68	134	219	315	419

- Mercury control costs include annualized capital purchase and installation costs plus annual operating and maintenance costs.
- Costs are annualized over equipment lifetime and includes utility rate of return on investment.
- "Estimated Cost" The estimated average costs for installing and operating surrogate mercury control equipment by existing pollution control classes in place at Wisconsin utilities.

[&]quot;High Cost" - Addresses additional costs on each unit for equipment modification or compensating design alternatives to mitigate potential barriers to achieving the target unit control efficiency.